Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE

In Further Pure Mathematics FP3 (6669/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 6669_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or $\mathrm{d} . .$. The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0 \quad$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Question Number	Scheme	Notes	$\mathrm{A}_{1} \mathrm{~s}_{0}$
1	$y=\operatorname{arsinh}(\tanh x)$		
Way 1	$\sinh y=\tanh x$		B1
	$\begin{aligned} & \cosh y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\operatorname{sech}^{2} x \\ & \text { or } \\ & \cosh y=\operatorname{sech}^{2} x \frac{\mathrm{~d} x}{\mathrm{~d} y} \end{aligned}$	M1: $\pm \cosh y$ or $\pm \operatorname{sech}^{2} x$	M1A1
		A1: All correct	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\operatorname{sech}^{2} x}{\cosh y}$		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\operatorname{sech}^{2} x}{\sqrt{1+\sinh ^{2} y}}=\mathrm{f}(x)$	Uses a correct identity to express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only	M1
	$=\frac{\operatorname{sech}^{2} x}{\sqrt{1+\tanh ^{2} x}} *$	cso. There must be no errors such as incorrect or missing or inconsistent variables and no missing h's.	A1*
			Total 5
Way 2	$t=\tanh x \Rightarrow y=\operatorname{arsinh} t$	Replaces $\tanh x$ by e,g. t	B1
	$\frac{\mathrm{d} t}{\mathrm{~d} x}=\operatorname{sech}^{2} x, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{1+t^{2}}}$	$\mathrm{M} 1: \frac{\mathrm{d} t}{\mathrm{~d} x}= \pm \operatorname{sech}^{2} x, \frac{\mathrm{~d} y}{\mathrm{~d} t}= \pm \frac{1}{\sqrt{1+t^{2}}}$	M1A1
		A1: Correct $\frac{\mathrm{d} t}{\mathrm{~d} x}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ and correctly labelled	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{\operatorname{sech}^{2} x}{\sqrt{1+t^{2}}}=\mathrm{f}(x)$	Uses correct form of the chain rule for their variables to express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only	M1
	$=\frac{\operatorname{sech}^{2} x}{\sqrt{1+\tanh ^{2} x}} *$	Cso. There must be no errors such as incorrect or missing or inconsistent variables and no missing h's.	A1*
			Total 5
Way 3	$u=\tanh x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\operatorname{sech}^{2} x$	Correct derivative	B1
	$\int \frac{\operatorname{sech}^{2} x}{\sqrt{1+\tanh ^{2} x}} \mathrm{~d} x=\int \frac{\operatorname{sech}^{2} x}{\sqrt{1+u^{2}}} \frac{1}{\operatorname{sech}^{2} x} \mathrm{~d} u$	M1: Complete substitution including the "d x "	M1A1
	$=\int \frac{1}{\sqrt{1+u^{2}}} \mathrm{~d} u=\operatorname{arsinh} u(+c)$	Reaches arsinh u	M1
	$y=\operatorname{arsinh}(\tanh x)(+c)$	Reaches $y=\operatorname{arsinh}(\tanh x)$ with or without +c and no errors such as incorrect or missing or inconsistent variables or missing h's.	A1*
			Total 5

Special Case:

$$
\begin{gathered}
y=\operatorname{arsinh}(\tanh x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1+\tanh ^{2} x}}(\times) \operatorname{sech}^{2} x \\
=\frac{\operatorname{sech}^{2} x}{\sqrt{1+\tanh ^{2} x}}
\end{gathered}
$$

Note that the $\operatorname{sech}^{2} x$ needs to appear separate from the fraction as above and not
just the printed answer written down.
To score more than 2 marks using a chain rule method, a third variable must be introduced

Question Number	Scheme	Notes	3.
2(a)	$\begin{gathered} \frac{2 x}{36}+\frac{2 y}{25} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{25 x}{36 y}=\frac{5 \cos \theta}{-6 \sin \theta} \quad \text { or } \\ x=6 \cos \theta, y=5 \sin \theta \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5 \cos \theta}{-6 \sin \theta} \quad \text { or } \\ \frac{y^{2}}{25}=1-\frac{x^{2}}{36} \Rightarrow y=5 \sqrt{1-\frac{x^{2}}{36}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{5 x}{36}\left(1-\frac{x^{2}}{36}\right)^{-\frac{1}{2}}=-\frac{5 \cos \theta}{6 \sin \theta} \end{gathered}$ M1: Correct attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using implicit or parametric or explicit differentiation $\left(a x+b y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots, \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{a \cos \theta}{b \sin \theta}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=a x\left(1-b x^{2}\right)^{-\frac{1}{2}}(o e) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots\right)$		M1
	$=-\frac{5 \cos \theta}{6 \sin \theta}$	A1: Correct tangent gradient in terms of θ. May be implied in their attempt the normal gradient.	A1
	$m_{N}=\frac{6 \sin \theta}{5 \cos \theta}$	Correct perpendicular gradient rule. May be awarded if working in terms of x and y.	M1
	$y-5 \sin \theta=$ Theirm $_{N}(x-6 \cos \theta)$	Correct straight line method for the normal using a "changed" $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ which must have come from calculus. If using $y=m x+c$, must reach as far as $c=\ldots$	M1
	$6 x \sin \theta-5 y \cos \theta=11 \sin \theta \cos \theta^{*}$	Correct completion to printed answer with no errors.	A1*
	Note that if the candidate uses e.g $y-5 \sin \theta=-$ final mark can be	$\frac{y}{x}(x-6 \cos \theta)$ before introducing θ, the thheld.	
			(5)
(b)	$\begin{aligned} & b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 25=36\left(1-e^{2}\right) \Rightarrow e^{2}=\frac{11}{36} \\ & \text { or } e=\sqrt{\frac{11}{36}} \end{aligned}$	Uses the correct eccentricity formula to obtain a value for e or e^{2}. Ignore \pm values for e .	M1
	$y=0 \Rightarrow x=\frac{11 \cos \theta}{6}$ or $\frac{11 \sin \theta \cos \theta}{6 \sin \theta}$	Correct x coordinate for Q	B1
	$\left(\frac{O Q}{O R}=\right) \frac{11 \cos \theta}{6} \times \frac{1}{6 \cos \theta}$	Attempts $\frac{\text { their } O Q}{\text { their } O R}$. May be implied by their ratio.	M1
	$=\frac{11}{36}$	Correct completion with no errors to obtain $\frac{11}{36}$ both times.	A1
	Ignore any references to the foci or directrices but the final mark can be withheld if there are any incorrect statements such as e.g. using $\cos \theta=1$ in their ratio.		
			(4)
			Total 9

(b) Way 1	$29 \cosh x-3\left(2 \cosh ^{2} x-1\right)=38$	Substitutes the result from part (a)	\%
	$6 \cosh ^{2} x-29 \cosh x+35=0 \Rightarrow \cosh x=\ldots$	Forms a 3-term quadratic and attempt to solve for $\cosh x$. You can apply the General Principles for solving a 3 TQ if necessary.	M1
	$\cosh x=\frac{7}{3}$ or $\cosh x=\frac{5}{2}$	Both correct (or equivalent values)	A1
	$\cosh x=\alpha \Rightarrow x=\ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)$ or $\cosh x=\alpha \Rightarrow x=\ln \left(\alpha-\sqrt{\alpha^{2}-1}\right)$ or $\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\alpha \Rightarrow x=\ldots$	Uses the correct \ln form for arcosh to find at least one value for x for $\alpha>1$ or uses the correct exponential form for cosh and solves the resulting 3 TQ in e^{x} to find at least one value for x for $\alpha>1$	M1
	$x=\ln \left(\frac{7}{3} \pm \sqrt{\frac{40}{9}}\right) \text { and } x=\ln \left(\frac{5}{2} \pm \sqrt{\frac{21}{4}}\right)$ Or equivalent exact forms e.g. $\begin{aligned} & x=\ln \frac{7 \pm 2 \sqrt{10}}{3} \text { and } x=\ln \frac{5 \pm \sqrt{21}}{2} \\ & x= \pm \ln \left(\frac{7+2 \sqrt{10}}{3}\right) \text { and } x= \pm \ln \left(\frac{5+\sqrt{21}}{2}\right) \\ & x=\ln (7 \pm 2 \sqrt{10})-\ln 3 \text { and } x=\ln (5 \pm \sqrt{21})-\ln 2 \end{aligned}$ A1: Any 2 of these 4 solutions. Penalise lack of brackets once where necessary, the first time it occurs and penalise lack of simplification once, the first time it occurs $\text { e.g. } \ln \frac{5}{2} \pm \frac{\sqrt{21}}{2}, \ln \left(\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^{2}-1}\right)$ A1: All 4 correct		A1A1
	Note that the decimal answers are, $\pm 1.49 \ldots, \pm 1.56 \ldots$,		
			(6)
	Total 9		

	(b) Way 2	
	$\begin{gathered} 29\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)-3\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)=38 \\ 6\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-29\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)+35=0 \end{gathered}$ Substitutes the correct exponential forms	M1
	$3 \mathrm{e}^{4 x}-29 \mathrm{e}^{3 x}+76 \mathrm{e}^{2 x}-29 \mathrm{e}^{x}+3=0 \quad$M1: Multiplies by $\mathrm{e}^{2 x}$ or $\mathrm{e}^{-2 x}$ to obtain a quartic in e^{x} or e^{-x}	M1A1
	$\left(3 \mathrm{e}^{2 x}-14 \mathrm{e}^{x}+3\right)\left(\mathrm{e}^{2 x}-5 \mathrm{e}^{x}+1\right)=0 \Rightarrow x=\ldots \quad \begin{aligned} & \text { Solves their quartic to find at least } \\ & \text { one value for } x\end{aligned}$	M1
	$x=\ln \left(\frac{7}{3} \pm \sqrt{\frac{40}{9}}\right) \text { and } x=\ln \left(\frac{5}{2} \pm \sqrt{\frac{21}{4}}\right)$ Or equivalent exact forms e.g. $\begin{gathered} x=\ln \frac{7 \pm 2 \sqrt{10}}{3} \text { and } x=\ln \frac{5 \pm \sqrt{21}}{2} \\ x= \pm \ln \left(\frac{7+2 \sqrt{10}}{3}\right) \text { and } x= \pm \ln \left(\frac{5+\sqrt{21}}{2}\right) \\ x=\ln (7 \pm 2 \sqrt{10})-\ln 3 \text { and } x=\ln (5 \pm \sqrt{21})-\ln 2 \\ \quad \text { e.g. } \ln \frac{5}{2} \pm \frac{\sqrt{21}}{2}, \ln \left(\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^{2}-1}\right) \end{gathered}$ A1: All 4 correct	A1A1

Question Number	Scheme		Notes	c
5.	$\Pi_{1}: x-2 y-3 z=5, \quad \Pi_{2}: 6 x+y-4 z=7$			
(a) Way 1	$\left(\begin{array}{r}1 \\ -2 \\ -3\end{array}\right) \cdot\left(\begin{array}{r}6 \\ 1 \\ -4\end{array}\right)=6-2+12$	Attempts scalar product of normal vectors allowing one slip. May be implied by a value of 16 .		M1
	$\begin{gathered} 16=\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{6^{2}+1^{2}+4^{2}} \cos \theta \\ \Rightarrow \cos \theta=\ldots \end{gathered}$	Complete attempt to find $\cos \theta$		M1
	$\cos \theta=\frac{16}{\sqrt{14} \sqrt{53}} \Rightarrow \theta=54^{\circ}$	Cao and do not isw. E.g. if they subsequently find $90-54$ or 180-54, score A0. Do not allow 54.0.		A1
(a) Way 2	$\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right) \times\left(\begin{array}{r}6 \\ 1 \\ -4\end{array}\right)=\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & -3 \\ 6 & 1 & -4\end{array}\right\|=\left(\begin{array}{r}11 \\ -14 \\ 13\end{array}\right)$	Attempts cross product of normal vectors. 2 components should be correct if there is no working.		M1
	$\begin{gathered} \sqrt{11^{2}+14^{2}+13^{2}}=\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{6^{2}+1^{2}+4^{2}} \sin \theta \\ \Rightarrow \sin \theta=\ldots \end{gathered}$		Complete attempt to find $\sin \theta$	M1
	$\sin \theta=\frac{9 \sqrt{6}}{\sqrt{14} \sqrt{53}} \Rightarrow \theta=54^{\circ}$	Cao and do not isw. E.g. if they subsequently find $90-54$ or $180-54$, score A0. Do not allow 54.0.		A1
				(3)
(b)	$\mathbf{P Q}=\left(\begin{array}{r}2 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -2 \\ -3\end{array}\right)$ or $\left(\begin{array}{c}2+\lambda \\ 3-2 \lambda \\ -1-3 \lambda\end{array}\right)$	Attempt parametric form of $\mathbf{P Q}$ by using the point P and the normal to Π_{1}		M1
	$\begin{gathered} 6(2+\lambda)+(3-2 \lambda)-4(-1-3 \lambda)=7 \\ \Rightarrow \lambda=\ldots \end{gathered}$	Substitutes parametric form of $\mathbf{P Q}$ into the equation of Π_{2} and solves for λ		M1
	$\lambda=-\frac{3}{4} \Rightarrow Q$ is $\left(\frac{5}{4}, \frac{9}{2}, \frac{5}{4}\right)$	M1: Uses their value of λ in their $\mathbf{P Q}$ equation		M1A1
				(4)

Question Number	Scheme	Notes	
6(a)	$\begin{aligned} & \operatorname{det} \mathbf{M}=1 \times(2-1)-k(-2+4)(+0)=1-2 k^{*} \\ & \text { or e.g. } \\ & \operatorname{det} \mathbf{M}=(0)-1(1+4 k)-1(-2-2 k)=1-2 k^{*} \\ & \quad \text { or rule of Sarrus: } \\ & \operatorname{det} \mathbf{M}=2-4 k-1+2 k=1-2 k^{*} \\ & (1)\left\|\begin{array}{cr} -2 & 1 \\ 1 & -1 \end{array}\right\|-k\left\|\begin{array}{cc} 2 & 1 \\ -4 & -1 \end{array}\right\|+0\left\|\begin{array}{rr} 2 & -2 \\ -4 & 1 \end{array}\right\| \end{aligned}$	M1: Correct attempt at determinant (at least 2 'elements' correct). May need to check as they might use a different row/column.	M1A1*
		A1: Obtains printed answer with no errors. If they use determinant notation as in the last example, then you must see at least one intermediate step before the printed answer e.g. minimally $1-2 k+0$.	
			(2)
(b)	$\begin{gathered} \left(\mathbf{M}^{\mathrm{T}}\right) \\ \left(\begin{array}{rrr} 1 & 2 & -4 \\ k & -2 & 1 \\ 0 & 1 & -1 \end{array}\right) \text { or }\left(\begin{array}{crc} 1 & 2 & -6 \\ -k & -1 & 1+4 k \\ k & 1 & -2-2 k \end{array}\right) \end{gathered}$	(cofactors) $\text { or }\left(\begin{array}{ccc} 1 & -2 & -6 \\ k & -1 & -1-4 k \\ k & -1 & -2-2 k \end{array}\right)$	B1
	$\mathbf{M}^{-1}=\frac{1}{1-2 k}\left(\begin{array}{ccc}1 & k & k \\ -2 & -1 & -1 \\ -6 & -1-4 k & -2-2 k\end{array}\right)$	M1: Full attempt at inverse ignoring determinant. Need to see all stages but allow numerical slips. A1: 2 correct rows or 2 correct columns including reciprocal of determinant	M1A1A1
		A1: All correct including reciprocal of determinant	
			(4)
(c)	$l_{2}:(1+5 \lambda) \mathbf{i}+(-2+2 \lambda) \mathbf{j}+(3+\lambda) \mathbf{k}$	M1: Attempt l_{2} in parametric form A1: Correct parametric form	M1A1
	$\begin{aligned} & \frac{1}{1}\left(\begin{array}{rrr} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{array}\right)\left(\begin{array}{c} 1+5 \lambda \\ -2+2 \lambda \\ 3+\lambda \end{array}\right)=\left(\begin{array}{c} 1+5 \lambda \\ -3-13 \lambda \\ -10-34 \lambda \end{array}\right) \\ & \frac{1}{1}\left(\begin{array}{rrr} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{array}\right)\left(\begin{array}{rr} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{array}\right)=\left(\begin{array}{rr} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{array}\right) \end{aligned}$	M1: Puts $k=0$ in their \mathbf{M}^{-1} and multiplies this by their parametric form correctly. Or starts again to find the inverse and multiplies.	M1A1
		A1: Correct parametric form for l_{1} or correct matrix.	
	$\begin{aligned} & \quad \frac{x-1}{5}=\frac{y+3}{-13}=\frac{z+10}{-34} \mathrm{oe} \\ & a_{1}+b_{1} \lambda \\ & a_{2}+b_{2} \lambda \rightarrow \frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}} \\ & a_{3}+b_{3} \lambda \end{aligned}$	M1: Attempts cartesian form from their parametric l_{1} correctly. Dependent on both previous M's.	dM1A1
		A1: A complete correct equation	
	If their \mathbf{M}^{-1} is incorrect in terms of k but by substituting $k=0$, a correct answer is obtained in (c) allow a full recovery.		
			(6)
			Total 12

$\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $6 \mathbf{i}+4 \mathbf{k}$ are on l_{2}
$\mathbf{M}^{-1}(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k})=\mathbf{i}-3 \mathbf{j}-10 \mathbf{k}$
$\mathbf{M}^{-1}(6 \mathbf{i}+4 \mathbf{k})=6 \mathbf{i}-16 \mathbf{j}-44 \mathbf{k}$
$\left(\begin{array}{c}6+5 \lambda \\ -16-13 \lambda \\ -44-34 \lambda\end{array}\right)$
$\frac{x-6}{5}=\frac{y+16}{-13}=\frac{z+44}{-34}$ oe
$a_{1}+b_{1} \lambda$
$a_{2}+b_{2} \lambda \rightarrow \frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}$
$a_{3}+b_{3} \lambda$

M1: Attempt two points on l_{1}	
A1: Two correct points on l_{1}	

(c) Way 3
$\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & -2 & 1 \\ -4 & 1 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ -10\end{array}\right)$
M1:Solves $\mathbf{M}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots$
M1A1
A1: $\mathbf{i}-3 \mathbf{j}-10 \mathbf{k}$. Correct vector or values for x, y and z

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & -2 & 1 \\
-4 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
2 \\
1
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
5 \\
-13 \\
-34
\end{array}\right)
$$

$$
\frac{x-1}{5}=\frac{y+3}{-13}=\frac{z+10}{-34}
$$

M1:Solves $\mathbf{M}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots$	M1A1
A1: $5 \mathbf{i}-13 \mathbf{j}-34 \mathbf{k}$. Correct vector or values for x, y and z	
M1: Attempts Cartesian form from their values correctly. Dependent on both previous M's.	dM1A1

A1: A complete correct equation
(c) Way 4

$$
l_{2}:(1+5 \lambda) \mathbf{i}+(-2+2 \lambda) \mathbf{j}+(3+\lambda) \mathbf{k}
$$

M 1 : Attempt l_{2} in parametric form correctly

M1A1
A1: Correct

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & -2 & 1 \\
-4 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1+5 \lambda \\
-2+2 \lambda \\
3+\lambda
\end{array}\right) \Rightarrow \begin{gathered}
x=1+5 \lambda \\
y=-3-13 \lambda \\
z=-10-34 \lambda
\end{gathered}
$$

M1: Uses $\mathbf{M x}=l_{2}$ in parametric form
A1: Correct expressions for x, y and z
M1: Attempts Cartesian form from

$$
\frac{x-1}{5}=\frac{y+3}{-13}=\frac{z+10}{-34}
$$

their values correctly. Dependent
on both previous M's.
dM1A1

Question Number	Scheme	Notes	32\%
7	$I_{n}=\int_{0}^{\ln 2} \cosh ^{n} x \mathrm{~d} x$		
(a)	$I_{n}=\int \cosh ^{n-1} x \cosh x \mathrm{~d} x$		
	$I_{n}=\int \cosh ^{n-1} x \cosh x \mathrm{~d} x=\sinh x \cosh ^{n-1} x-\int(n-1) \cosh ^{n-2} x \sinh ^{2} x \mathrm{~d} x$ M1: Integration by parts in the correct direction. If the formula is quoted it must be correct otherwise look for an expression of the form $\pm \sinh x \cosh ^{n-1} x \pm k \int \cosh ^{n-2} x \sinh ^{2} x \mathrm{~d} x$ A1: Correct expression		M1A1
	$=\sinh x \cosh ^{n-1} x-\int(n-1) \cosh ^{n-2} x\left(\cosh ^{2} x-1\right) \mathrm{d} x \left\lvert\, \begin{aligned} & \text { Replaces } \sinh ^{2} x \text { with } \\ & \pm \cosh ^{2} x \pm 1 \text { on the } \\ & \text { "integration part" to obtain an } \\ & \text { expression in cosh } x \text { only. } \\ & \text { Dependent on the first } \\ & \text { method mark. } \end{aligned}\right.$		dM1
	$=\sinh x \cosh ^{n-1} x-(n-1) \int \cosh ^{n} x \mathrm{~d} x+(n-1) \int \cosh ^{n-2} x \mathrm{~d} x$		
	$=\sinh x \cosh ^{n-1} x-(n-1) I_{n}+(n-1) I_{n-2}$	Introduces I_{n} and I_{n-2}. Dependent on both previous method marks.	ddM1
	$\begin{aligned} {\left[\sinh x \cosh ^{n-1} x\right]_{0}^{\ln 2} } & =\sinh (\ln 2) \cosh ^{n-1}(\ln 2)(-0) \\ (& \left.=\left(\frac{3}{4}\right)\left(\frac{5}{4}\right)^{n-1}\right) \end{aligned}$	Use of given limits on their $\sinh x \cosh ^{n-1} x$. Does not need to be evaluated but note that $\cosh (\ln 2)=\frac{5}{4}, \sinh (\ln 2)=\frac{3}{4}$	M1
	$I_{n}=\frac{3 \times 5^{n-1}}{n \times 4^{n}}+\frac{(n-1)}{n} I_{n-2} *$	cao	A1*
			(6)

$$
I_{n}=\int \cosh ^{n-2} x \cosh ^{2} x \mathrm{~d} x=\int \cosh ^{n-2} x \mathrm{~d} x+\int \cosh ^{n-2} x \sinh ^{2} x \mathrm{~d} x
$$

Writes $\cosh ^{n} x$ as $\cosh ^{n-2} x \cosh ^{2} x$ and uses $\sinh ^{2} x= \pm \cosh ^{2} x \pm 1$

$$
\int \cosh ^{n-2} x \sinh ^{2} x \mathrm{~d} x=\left[\frac{\sinh x \cosh ^{n-1} x}{n-1}\right]-\frac{1}{n-1} \int \cosh ^{n} x \mathrm{~d} x
$$

M1: Integration by parts in the correct direction. If the formula is quoted it must be correct otherwise look for an expression of the form

$$
p \sinh x \cosh ^{n-1} x \pm q \int \cosh ^{n} x \mathrm{~d} x
$$

A1: Correct expression

$$
(n-1) I_{n}=(n-1) I_{n-2}+\left[\sinh x \cosh ^{n-1} x\right]-I_{n}
$$

$$
\text { Introduces } I_{n} \text { and } I_{n-2}
$$

Dependent on both
Use of given limits on their

$$
\left[\sinh x \cosh ^{n-1} x\right]_{0}^{\ln 2}=\sinh (\ln 2) \cosh ^{n-1}(\ln 2)(-0)
$$

$$
\sinh x \cosh ^{n-1} x \text {. Does not }
$$

need to be evaluated but note

$$
\left(=\left(\frac{3}{4}\right)\left(\frac{5}{4}\right)^{n-1}\right)
$$

that

$$
\cosh (\ln 2)=\frac{5}{4}, \sinh (\ln 2)=\frac{3}{4}
$$

$$
I_{n}=\frac{3 \times 5^{n-1}}{n \times 4^{n}}+\frac{(n-1)}{n} I_{n-2} * \quad \mathrm{cac}
$$

cao	$\mathrm{A} 1^{*}$

You can condone the occasional missing $x, \mathrm{~d} x$ and limits along the way and "invisible" brackets may be recovered.
Do not allow e.g. an obvious sign error that gets "corrected" later - withhold the final A1 in such cases.
(b) $\quad I_{4}=\frac{3 \times 5^{3}}{4 \times 4^{4}}+\frac{3}{4} I_{2}$ or $\frac{3 \times a^{3}}{4 \times b^{4}}+\frac{3}{4} I_{2}$

Correct first application of their or

$$
=\frac{3 \times 5^{3}}{4 \times 4^{4}}+\frac{3}{4}\left(\frac{3 \times 5}{2 \times 4^{2}}+\frac{1}{2} I_{0}\right) \text { or } \frac{3 \times a^{3}}{4 \times b^{4}}+\frac{3}{4}\left(\frac{3 \times a}{2 \times b^{2}}+\frac{1}{2} I_{0}\right)
$$

Correct second application of their or the given reduction formula that is consistent with the formula used in the first application to obtain I_{4} in terms of I_{0}

$I_{0}=\ln 2$		B1
$I_{4}=\frac{735}{1024}+\frac{3}{8} \ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1

Note that candidates may work from the "other end" e.g.

$$
\begin{gathered}
I_{0}=\ln 2 \quad \text { B1 } \\
I_{2}=\frac{3 \times 5}{2 \times 4^{2}}+\frac{1}{2} I_{0} \quad \text { M1 } I_{2} \text { interms of } I_{0} \\
I_{4}=\frac{3 \times 5^{3}}{4 \times 4^{4}}+\frac{3}{4}\left(\frac{3 \times 5}{2 \times 4^{2}}+\frac{1}{2} I_{0}\right) \quad \text { M1 } I_{4} \text { interms of } I_{0} \\
I_{4}=\frac{735}{1024}+\frac{3}{8} \ln 2 \quad \mathrm{~A} 1
\end{gathered}
$$

Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)
(b)

Way 2

$I_{4}=\frac{3 \times 5^{3}}{4 \times 4^{4}}+\frac{3}{4} I_{2}$	Correct application of their reduction formula	M1
$I_{2}=\int_{0}^{\ln 2} \cosh ^{2} x \mathrm{~d} x=\int_{0}^{\ln 2}\left(\frac{1}{2}+\frac{1}{2} \cosh 2 x\right) \mathrm{d} x$		B 1
$\left.I_{2}=\left[\frac{1}{2}+\frac{1}{2} \cosh 2 x\right) \mathrm{d} x=\frac{1}{4}+\frac{1}{4} \sinh 2 x\right]_{0}^{\ln 2}=\frac{1}{2} \ln 2+\frac{15}{32}$	Correct integration Correct use of limits on an expression of the form $\alpha x+\beta$ sinh $2 x$	M 1
$I_{4}=\frac{3 \times 5^{3}}{4 \times 4^{4}}+\frac{3}{4}\left(\frac{1}{2} \ln 2+\frac{15}{32}\right)$	A 1	
$I_{4}=\frac{735}{1024}+\frac{3}{8} \ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	l

(b) 3	$I_{4}=\int_{0}^{\ln 2} \cosh ^{4} x \mathrm{~d} x=\int_{0}^{\ln 2}\left(\frac{1}{2}+\frac{1}{2} \cosh 2 x\right)^{2} \mathrm{~d} x$	
	$\int_{0}^{\ln 2}\left(\frac{1}{4}+\frac{1}{2} \cosh 2 x+\frac{1}{4} \cosh ^{2} 2 x\right) \mathrm{d} x$	$\cosh ^{4} x=\frac{1}{4}+\frac{1}{2} \cosh 2 x+\frac{1}{4} \cosh ^{2} 2 x$

(b) Way 4	$I_{4}=\int_{0}^{\ln 2} \cosh ^{4} x \mathrm{~d} x=\int_{0}^{\ln 2}\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{4} \mathrm{~d} x$		
	$=\int_{0}^{\ln 2}\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{4} \mathrm{~d} x=\left(\frac{1}{16}\right) \int_{0}^{\ln 2}\left(\mathrm{e}^{4 x}+4 \mathrm{e}^{2 x}+6+4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}\right) \mathrm{d} x$ Correct expansion		B1
	$=\left(\frac{1}{16}\right)\left[\frac{\mathrm{e}^{4 x}}{4}+2 \mathrm{e}^{2 x}+6 x-2 \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-4 x}}{4}\right]_{0}^{\ln 2}$	Attempts to integrate their expansion	M1
	$\left(\frac{1}{16}\right)\left[\left(4+8+6 \ln 2-\frac{1}{2}-\frac{1}{64}\right)-(0)\right]_{0}^{\ln 2}$	Correct use of correct limits	M1
	$I_{4}=\frac{735}{1024}+\frac{3}{8} \ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1
			Total 10

| $y=\ln \left(\frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}-1}\right)=\ln \left(\operatorname{coth} \frac{1}{2} x\right) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\operatorname{coth} \frac{1}{2} x} \times-\frac{1}{2} \operatorname{cosech}^{2} \frac{1}{2} x$ |
| :---: | :---: | :---: |
| $\mathrm{M} 1:$ Writes as $\ln \left(\operatorname{coth} \frac{1}{2} x\right)$ and differentiates using the chain rule |
| A1: Correct differentiation |\quad M1A1

	(a) Way 5		
	$\begin{array}{r} \operatorname{artanh} x=\frac{1}{2} \ln (\\ \frac{\mathrm{d} y}{\mathrm{~d} x}= \end{array}$ M1: Writes y correctly in terms of artan	$2 \operatorname{artanh}\left(\mathrm{e}^{-x}\right)$ to differentiate using the chain rule ation	M1A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 \mathrm{e}^{-x}}{1-\mathrm{e}^{-2 x}}=\frac{-2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}-1} *$	dM1: Multiplies numerator and denominator by e ${ }^{2 x}$. Dependent on the first method mark. A1: Completes correctly with no errors	dM1A1

	(a) Way 6		
	$y=\ln \left(1+\frac{2}{\mathrm{e}^{x}-1}\right) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=$ M1: Writes $\frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}-1}$ as $1+\frac{2}{\mathrm{e}^{x}-1}$ a A1: Correct	$1)^{-1} \times-2 \mathrm{e}^{x}\left(\mathrm{e}^{x}-1\right)^{-2}$ ntiates using the chain rule tion	M1A1
	$=\frac{-2 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}+2\left(\mathrm{e}^{x}-1\right)}=\frac{-2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}-1}$	dM1: Multiplies denominator by $\left(\mathrm{e}^{x}-1\right)^{2}$. Dependent on the first method mark. A1: Completes correctly with no errors	dM1A1

(b)	$L=\int \sqrt{\left(1+\left(\pm \frac{2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}-1}\right)^{2}\right)} \mathrm{d} x$	Uses the correct arc length formula with \pm the result from part (a). Note that we condone the omission of the minus sign on the fraction)	M1
	$=\int \sqrt{\left(\frac{\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+1+4 \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}\right)} \mathrm{d} x$	Attempt single fraction. Dependent on the first method mark.	dM1
	Note that, for the first 2 marks, the candidate may just work on the integrand e.g. $\sqrt{\left(1+\left(\pm \frac{2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}-1}\right)^{2}\right)}=\sqrt{\left(\frac{\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+1+4 \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}\right)}$ Would score the first 2 marks.		
	$L=\int \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \mathrm{~d} x=\int \frac{\left(\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{2 x}-1\right)} \mathrm{d} x$	Correct integral with square root removed. No limits required.	A1
	$\begin{gathered} =\int \operatorname{coth} x \mathrm{~d} x, \int \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}-\mathrm{e}^{-x}} \mathrm{~d} x, \int 1+\frac{2 \mathrm{e}^{-2 x}}{1-\mathrm{e}^{-2 x}} \mathrm{~d} x, \frac{1}{2} \int \frac{2}{u}-\frac{1}{u+1} \mathrm{du}\left(u=\mathrm{e}^{2 x}-1\right) \\ \frac{1}{2} \int \frac{2}{u-1}-\frac{1}{u} \mathrm{~d} u\left(u=\mathrm{e}^{2 x}\right), \int \frac{1}{u+1}+\frac{1}{u-1}-\frac{1}{u} \mathrm{~d} u\left(u=\mathrm{e}^{x}\right), \\ \frac{1}{2} \int \frac{2}{u-2}-\frac{1}{u-1} \mathrm{~d} u\left(u=\mathrm{e}^{2 x}+1\right) \end{gathered}$		
	$\begin{gathered} =[\ln \sinh x],\left[\ln \left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right],\left[x+\ln \left(1-\mathrm{e}^{-2 x}\right)\right],[\ln u-\ln \sqrt{(1+u)}], \\ {[\ln (u-1)-\ln \sqrt{u}],\left[\ln \frac{\left(u^{2}-1\right)}{u}\right],[\ln (u-2)-\ln \sqrt{u-1}]} \end{gathered}$ Correct integration		A1
	$\begin{gathered} =\ln \sinh (\ln 3)-\ln \sinh (\ln 2) \\ \left(=\ln \frac{4}{3}-\ln \frac{3}{4}\right) \end{gathered}$	Correct use of limits e.g. $\ln 3$ and $\ln 2$ for x and e.g. 3 and 8 if $u=\mathrm{e}^{2 x}-1$. They must be the correct limits for their method if they use substitution. Dependent on both previous method marks.	ddM1
	$=\ln \frac{16}{9}$	cao	A1
			(6)
			Total 10

